We use cookies. Find out more about it here. By continuing to browse this site you are agreeing to our use of cookies.

Job posting has expired

Back to search results

Remote Data Engineer

University of Maryland Medical System
United States, Maryland, Linthicum
January 19, 2023

What You Will Do:

General Summary

The Data Engineer will be primarily working with the areas of finance, population health, value-based care, claims analytics, and regulatory reporting.

Under limited direction, responsible for design and implementation of core technologies associated with the organizations data analysis and analytics technical infrastructure. As a core member of a high-performance team, ensure data pipelines are consistently and reliably maintained and analytics capabilities are delivered at an optimum level, helping the organization identify insights from a large number of diverse datasets.

Principal Responsibilities and Tasks

The following statements are intended to describe the general nature and level of work being performed by people assigned to this classification. These are not to be construed as an exhaustive list of all job duties performed by personnel so classified.

1. Ensure analytics infrastructure and associated systems meet business requirements and industry best practices.

2. Gather and process raw data from multiple disparate sources (including writing scripts, calling APIs, write SQL queries, etc.) into a form suitable for analysis.

3. Gathers, analyzes, documents and translates application requirements into data models.

4. Builds data models.

5. Enables big data, batch and real-time analytical processing solutions leveraging emerging technologies.

6. Researches and proposes opportunities for data acquisition and new uses for existing data.

7. Codes, tests, and documents new or modified data systems to create robust and scalable applications for analytics.

8. Expands and grows data platform capabilities to solve new data problems and challenges.

9. Creates data flow diagrams for business systems.

10. Builds automation tools; ensures all automated processes preserve data by managing the alignment of data availability and integration processes.

11. Performs technology and product research to better define requirements, resolve important issues and improve the overall capability of the technology stack.

12. Contributes to the design and direction of enterprise-wide data architecture as well as design documentation deliverables.

13. Supports standardization of documentation and the adoption of standards and practices related to data and applications.

14. Develops Relational Data Models, Dimensional Data Models, Data Dictionary and Metadata.

15. Develop data set processes for data mining and production.

16. Working both independently and in collaboration with our data integration developers, data scientists, designs and builds high-performance algorithms, prototypes, predictive models and proof of concepts.

17. Works closely with our developer team to integrate innovative algorithms into our production systems.

18. Supports business decisions with ad hoc analysis as needed.

What You Need to Be Successful:

Education and Experience

1. Bachelor's degree in computer science, mathematics, information systems, engineering, physical sciences, life sciences or closely related field is required. Four (4) years of equivalent related professional experience may be substituted for education requirement. Additional certifications are preferred.

2. Minimum two (2) years' experience designing, implementing and supporting systems in a large scale analytics or data engineering environment containing many disparate application systems and multiple data sources is required.

3. Previous experience and knowledge in programming or scripting languages. (e.g., C/C++, Python, Ruby) is required.

4. Experience with agile or other rapid application development methods is required.

5. Experience with object-oriented design, coding and testing patterns as well as experience in engineering software platforms and large-scale data infrastructures is required.

6. Experience and understanding of Big Data technologies, Analytics & Visualization is preferred. Two or more years' experience in Enterprise Data Integration is also preferred.

Knowledge, Skills and Abilities

1. Knowledge of data analysis, end user requirements analysis, and business requirements analysis to develop a clear understanding of the business needs and to incorporate these needs into technical solutions.

2. Strong knowledge of and experience with data mapping and ETL (Extract Transform Load) concepts.

3. Significant knowledge of data modeling and understanding of different data structures and their benefits and limitations under particular use cases.

4. Working knowledge of relational, document oriented or object oriented databases, such as PostgreSQL, Oracle, Cache, SQL, and MongoDB.

5. Deep knowledge in data mining, machine learning or natural language processing.

6. Strong programming experience to clean and scrub noisy datasets; experience building parameterized scripts/programs and automation ideally using python or java

7. Experience with Hortonworks or the Hadoop ecosystem in general, including HDSF and such tools as Spark, MapReduce, Pig and Hive. Experience with Ranger / Atlas and /or Falcon would be useful.

8. Experience with various messaging systems, such as ActiveMQ or RabbitMQ is preferred. Experience with web development frameworks such as Django would also be preferred.

10. Must work well in a high-performance team environment.

We are an Equal Opportunity Employer and do not discriminate against any employee or applicant for employment because of race, color, sex, age, national origin, religion, sexual orientation, gender identity, status as a veteran, and basis of disability or any other federal, state or local protected class.